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Introduction )

= Aim: Develop a predictive RANS model for transonic jet-in-
crossflow simulations

= A strongly vortical flow, often with weak shocks

"= Drawback: RANS simulations are simply not predictive
= They have “model-form” error i.e., missing physics

= The numerical constants/parameters in the k-¢ model are usually
derived from canonical flows — incompressible flow over plates,
channel etc.

" Hypothesis

= One can calibrate RANS on flow over a square cylinder (strongly
vortical) to obtain better parameter estimates

= Due to model-form error and limited square-cylinder experimental
measurements, the parameter estimates will be approximate
We will estimate parameters as probability density functions (PDF)
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The problem

=  The model
= Devising a method to calibrate 3 k-¢ parameters C = {Cw C,, C,} from expt. data
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= (Calibration parameters
= C,: affects turbulent viscosity; C; & C,: affects dissipation of TKE

= Calibration method
= Pose a statistical inverse problem using experimental data for flow-over-a-square-

cylinder
= Estimate parameters using Markov chain Monte Carlo

= Construct a polynomial surrogate for square-cylinder RANS simulations



Target problem - jet-in-crossflow M.

A canonical problem for spin-
rocket maneuvering, fuel-air
mixing etc.

We have experimental data (PIV
measurements) and
corresponding RANS simulations

The RANS simulations have
stability problems

Subgorn . counter-rotating
vortex pair
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RANS (k-m) simulations - crossplane results 1 .

= Crossplane results for stream

= Computational results (SST) are too round; Kw98 doesn’t have
the mushroom shape; non-symmetric!

= Less intense regions; boundary layer too weak i



RANS (k-w) simulations — midplane @&.
results

U-defect | W - velocity
= Experimental results in black

= All models are pretty inaccurate (blue and red lines are the non-
symmetric results)




The desired outcome ) .

= Summary
= The velocity distribution from RANS at the crossplane is pretty terrible
= At the mid-plane, the jet sits too high; the vertical velocity is too high
indicating a very strong vortex
= Aims of the calibration

= Get the crossplane vorticity distribution right
Correct circulation, position and size of the CVP

= Match the midplane velocity profiles

= Procedure

= Use experimental data from a flow-over-square-cylinder experiment
Observations of Reynolds stress in the wake behind the cylinder

= Construct a computationally inexpensive surrogate for the RANS
model / predictions of Reynolds stress

= Use the surrogate for Bayesian calibration of the 3 parameters
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Flow over a square cylinder

u EXperImental data St ] l | 2-D1Ineasurementrpoints ¢ |
1-D measurement points
= Water tunnel, 39 cm X 56 cm 4 e
. y/D
cross-section 3 L
* Square-cylinder 4 cm per side 2 Driiiiiiiiiiiiiiiiiiiiniiolll
= 96 probes in the wake where L iilibl

1 = u’v’ are measured

-2 0 2 4 6 xD 8

= Calibration: Make a map of 7

to (CM, Cz,Cl)
.. Experimental data and setup from Lyn & Rodi,
= Use a statistical (surrogate) model ey 1994

= Make a RANS training set using
2744 samples from the (C,, C,, C;)
space

= Save 1 = U’V at the 96 probes for
each run

Figure 1: Coordinate system and location of measurement points.
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Surrogate models ).

= Model n as a function of Ci.e. n =n(C)

= Approximate this dependence with a polynomial

M=y = 4y +a,C, +a,C, +a,C +a,C C,+a;C,C +a,C,C\ +.....

= Given 1, at a bunch of probe locations, it should be possible to
estimate {C,, C,, C;} by fitting the polynomial model to data
= But how to get (a,, a,, ....) for each of the probe locations to
complete the surrogate model for each probe?
= Divide training data in a Learning Set and Testing Set

= Fit a full quadratic model for n to the Learning Set via least-squares
regression; sparsify using AIC

= Estimate prediction RMSE for Learning & Testing sets; should be equal

* Final model tested using 100-fold cross-validation; a 10%
error threshold was used to select models for the probes




Calibration — in earnest

= Basic idea: 5y
Choose 55/96 probes atx/D =2 ... 8 yo|

Measured u’v’, U’ and v’

minimize ||hy, — Nyengll2 DY finding '

‘good’ values of (C,, C,, C))
Bayesian calibration: Find P(C_,, C,, C,

| hexpt)

i\
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2-D measurement points  ©
1-D measurement points  *

o o

o o o

Figure 1: Coordinate system and location of measurement points.

 RANS does not even provide a very good prediction for the wake
— (Mex — Mireng) €aN be large for many probes
» Choose a set of ‘calibration’ probes
— 0.25 < Mgy / Myrend(Crominal) < 4

* We end up with 28 / 96 probes which we can use for calibration
— We call this set of 28 probes P
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The Bayesian calibration problem M.

« Model experimental values at probe p as n®,, = n®)4(C) + &),
eP) ~ N(0, 0?)

(p) (p)

2
A(n1C) o T exp (s _Z:;d(C))

pEP
» Given prior beliefs & on C, the posterior density (‘the PDF’) is

P(C,oln)yc AP 1C,0) 7, (C,) m,(C,) m,(C)m, (0)

X ex

* P(CIn,,) is a complicated distribution that has to be described/
visualized by drawing samples from it

* This is done by MCMC




What is MCMC? ) S

= A way of sampling from an arbitrary distribution
= The samples, if histogrammed, recover the distribution

= Efficient and adaptive

= Given a starting point (1 sample), the MCMC chain will sequentially
find the peaks and valleys in the distribution and sample
proportionally

= Ergodic

= Guaranteed that samples will be taken from the entire range of the
distribution

= Drawback

= Generating each sample requires one to evaluate the expression for
the density @

= Not a good idea if mwinvolves evaluating a computationally expensive
model



An example, using MCMC L

= Given: (Y°°, X), a bunch of n observations
= Believed:y=ax+b
=  Model: y°* =ax. + b, + ¢, e ~ N0, O)
= We also know a range where a, b and ¢ might lie
= j.e. we will use uniform distributions as prior beliefs for a, b, o
= For agiven value of (a, b, 0), compute “error” g, =y.°* — (ax, + b,)
= Probability of the set (a, b, 0) = IT exp( - ¢2/0?)
= Solution: i (a, b, o | Yobs, X' ) =TI exp( - £2/5?) * (bunch of uniform priors)
= Solution method:
= Sample fromz (a, b, o | Y, X ) using MCMC; save them

= Generate a “3D histogram” from the samples to determine which region in the (a, b, 0)
space gives best fit

= Histogram values of a, b and o, to get individual PDFs for them
= Estimation of model parameters, with confidence intervals!



MCMC, pictorially

" Choose a starting point, P" =
(acurr' b

= Propose anew a, a
:hv(acurw (ja)

" Evaluate i (a,,, bcurr | ...)/
T ( acurr' curr | ) -

= Accepta, ., (i.e.ac,, <-ay0p)

with proEa ility min(1, m)
= Repeat with b

= Loop over till you have
enough samples

curr)

prop

Sandia
’11 National
Laboratories

“good” values of (a, b)
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MCMC solution for (C, C,, C,)

= Computed using an
adaptive MCMC
method (DRAM)

= These are marginals— . | a
the distribution is 4D 006 008 010 012

00 05 10 15 20 25

Cu
= Nominal values are )
vertical lines ; 2 -
= Blue dashed lines are . - 3 1
prior beliefs = ]
= The model errorcis < .
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Recreating expt. observations

Post-calibration,
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we choose 100 C

O After calibration
A Experiment

S _ + Nominal parameter values
samples from the S
PDF _ B
= Run the ensemble = I
of 100 RANS runs i T T |
and plot resultsat % 8 - T |
P i A L &[]
il 4 N OB R
: o Y AV e
Median S1 . g
predictions close I L ]
to experimental ?glf_ il B 1
values | % | |
Error bars capture 20 40 60 80
Probe ID
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Recreating experimental observatioffg-

Post-calibration,
we choose 100 C
samples from the
PDF

= Run the ensemble
of 100 RANS runs
and plot results at

P
Median
predictions close
to experimental
values

Error bars capture
all measurements

Re stress
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Is the PDF predictive for jet-in- ) .
crossflow?

240 250 260 270 280
u (m/s)

= Pick 100 C samples from
the PDF

= Simulate jet-in-crossflow

\mog
T

50 >

= In the crossplane, quantify

= Circulation % o

= Centroid of vorticity

= Radius of gyration

3000

= From the ensemble,
calculate median, quartiles
etc

2000

1000

-1000

= Compare with 000
experimental values 3000

i -4000

)6 -0.04 -0.02 0 0.02 0.04 0.06




Comparison of predictions and ) e,
experiments

Jet-in—crossflow predictions

Plotting Predictions /

2 -
Experimental values =18l
We overpredict a 1
circulation £ " 1 l
Location is somewhat off ém l
Size is somewhat larger § Bl -

Big improvements over § bl : L T o
nominal value g o8 | o

Also search the 100 E 06 L
ensemble members for = 4l o L

bESt predicl‘ion Circulation Centroid-z Centroid-y  Radius of gyration

= “Optimal” ensemble
member

19
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Optimal ensemble member — vorticity

8000

6000

4000

2000

0

o 0.01 0.02 0.03 0.04 0.05
Z (m)

With nominal C With best C

= Experimental vorticity as contours
= Calibration positions the vortex better; also gets its strength right

= The circulation, position and size are +/- 15% from experiments
20
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Optimal ensemble member — u deficit

Predictions with IQR; x/DJ_ =315 Predictions with IQR; x/Dj =42.0
18 T T T T 18 T T T T
o Experiments o Experiments
16} - = ~=-Nominal 4 16} - = =Nominal 4
—— Optimal —— Optimal
14} — Predictions | 14} — Predictions |
12f . 12f
10f . _ 1o}
g a
= =
8f - 8r
6f - 6f
4t . 4t
2k . 20
0 | ! | — | \7' - 'ﬁ% O h
-0.05 0 0.05 0.1 0.15 0.2 -0.05 0 0.05 0.1 0.15 0.2
Velocity deficit Velocity deficit
x/D = 31.6 x/D =42.0

= |Improvement over C but u-deficit error is significant

nominal’
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Optimal ensemble member: w velocity

Predictions with IQR; x/Dj =315

18 T T T
o Experiments
161 - - =-Nominal .
Optimal
14f —— Predictions ]
121 8
10t 1
8k -
6k -
4+ i
2k -
Ok -
—_&05 6 0.65 0‘.1 O.‘15 O‘.2 O.‘25 0.‘3 O.i’35 0.4
Vertical velocity
x/D = 31.6
" Improvement over C_ . . .,

= Nearly nailed the experiment
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Predictions with IQR; x/Dj =42.0

14}

101

o Experiments
- - -Nominal 1
Optimal
— Predictions

1

0 0.05 0.1

0.15 0.2 0.25 0.3

Vertical velocity

x/D = 42.0

22
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Conclusions )

= Qur hypothesis of calibrating to a simple vortical flow for
predictive jet-in-crossflow proved correct

= Even simple, polynomial surrogates were sufficiently accurate
to allow us to calibrate RANS models

= More elaborate models, with the deficit would probably do somewhat
better

= With surrogates come Bayesian calibration and PDFs of calibrated
parameters
" Being able to get a PDF for (C, C,, C,) proved to be very
convenient
= Ensemble predictions provide error bars on predictions

= They allow us to test various (C,, C,, C;) combinations for predictive
power

= Details: S. Lefantzi, J. Ray, S. Arunajatesan and L. Dechant, "Tuning a RANS k-¢
model for jet-in-crossflow simulations”, Sandia Technical Report, SAND2013-8158 4



